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Recently, we have found an additional spin-orbit �SO� interaction in quantum wells with two subbands
�Bernardes et al., Phys. Rev. Lett. 99, 076603 �2007��. This new SO term is nonzero even in symmetric
geometries, as it arises from the intersubband coupling between confined states of distinct parities, and its
strength is comparable to that of the ordinary Rashba. Starting from the 8�8 Kane model, here we present a
detailed derivation of this new SO Hamiltonian and the corresponding SO coupling. In addition, within the
self-consistent Hartree approximation, we calculate the strength of this new SO coupling for realistic symmet-
ric modulation-doped wells with two subbands. We consider gated structures with either a constant areal
electron density or a constant chemical potential. In the parameter range studied, both models give similar
results. By considering the effects of an external applied bias, which breaks the structural inversion symmetry
of the wells, we also calculate the strength of the resulting induced Rashba couplings within each subband.
Interestingly, we find that for double wells the Rashba couplings for the first and second subbands interchange
signs abruptly across the zero bias, while the intersubband SO coupling exhibits a resonant behavior near this
symmetric configuration. For completeness we also determine the strength of the Dresselhaus couplings and
find them essentially constant as function of the applied bias.
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I. INTRODUCTION

The coupling between spatial and spin degrees of freedom
in semiconductors provides an interesting possibility for co-
herently manipulating the electron spin via its orbital
�charge� motion. For instance, the proposal of Datta and Das1

for a spin field-effect transistor highlights the use of the spin-
orbit �SO� interaction of Rashba,2–4 which is electrically
tunable,5,6 to control—via spin rotation—the flow of elec-
trons between ferromagnetic source and drain.

In addition to the Rashba SO coupling present in hetero-
structures with structural inversion asymmetry in the confin-
ing potential, there is the Dresselhaus SO interaction7 present
in both bulk and confined structures with inversion asymme-
try in the underlying crystal lattice. These spin-orbit interac-
tions have played an important role in the exciting field of
semiconductor spintronics as they underlie a number of in-
teresting physical phenomena and potential spintronic
applications.8–10 For instance, the effective zitterbewegung of
spin-polarized wave packets injected into SO coupled two-
dimensional �2D� electron gases is a very interesting
possibility.11,12 The interplay of the Rashba and Dresselhaus
interactions can give rise to conserved spin-rotation
symmetries13,14 relevant for devising robust SO-based de-
vices operating in the nonballistic regime.13

Recently, a new type of SO interaction arising in quantum
confined systems with two subbands has been found.15 Un-
like the usual Rashba SO, this new SO term is nonzero even
in wells with full structural inversion symmetry �and hence it
does not produce spin splitting�. This essentially follows
from the distinct parities of the confined states �even and
odd�, which can couple via the derivative of a symmetric
potential. This intersubband-induced SO coupling is qua-
dratic in the crystal momentum, unlike the Rashba and the
�linearized� Dresselhaus terms in wells.16 As shown in Ref.

15, this SO coupling can give rise to an unusual zitter-
bewegung �both in position and in spin17� and a nonzero spin
Hall conductivity.

Here we complement and extend the work of Ref. 15: �i�
We present a more thorough derivation of the intersubband-
induced SO interaction, starting from the 8�8 Kane
model18–20 within the k ·p approach. We also slightly gener-
alize the derivation for confined systems with more than two
subbands and structurally asymmetric potentials in which the
usual Rashba-type SO interaction is present. �ii� We perform
a detailed investigation of the relevant SO couplings via a
self-consistent scheme where we solve both Poisson and
Schrödinger equations numerically �Numerov method�
within the Hartree approximation. We consider realistic
modulation-doped single and double quantum wells with ap-
plied external biases, which can change the spatial symmetry
of the wells, and having either a constant areal electron den-
sity or a constant chemical potential.

Our simulations focus on wells with two subbands. For
nonzero applied biases we calculate not only the
intersubband-induced SO coupling � but also the Rashba-
type couplings �0, �1 for the first and second subbands, re-
spectively. For completeness, we also calculate the linearized
Dresselhaus SO couplings for each subband.21 For both the
constant density and constant chemical-potential models
considered, we find sizable values of the intersubband SO
coupling � as compared to the usual Rashba and Dresselhaus
couplings. Interestingly, for double wells near the symmetric
�zero-bias� configuration we find that � has a resonant be-
havior, changing its magnitude by a factor of 10. On the
other hand, the Rashba couplings for the first and second
subbands abruptly change signs around the zero-bias voltage.
The Dresselhaus couplings do not show any noticeable be-
havior around this point, being essentially constant as a func-
tion of the applied bias.
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We note that the SO coupling constants �, �0, and �1
contain contributions from the potential-well �and barrier�
offsets, the electronic Hartree potential, and the external gate
plus the modulation doping potentials. For the single wells
investigated here, the external gate �+ modulation doping� is
the dominant contribution to �0 and �1, while � is mostly
determined by the Hartree and structural offset contributions.
On the other hand, for the double wells studied the electronic
Hartree potential is the dominant contribution to �, �0, and
�1. Interestingly, the Hartree potential in this case is highly
influenced by the external gate, particularly around the sym-
metric �zero-bias� configuration, as the electrons can localize
in either well for small �positive or negative� changes in the
gate potential. This renders �, �0, and �1 more amenable to
gate modulations in double wells as compared to single
wells. Next we outline our work.

In Sec. II we review the k ·p approach and the Kane
model. In Sec. III we present a detailed derivation of our
effective Hamiltonian for electrons in heterostructures with
many confined states within the Kane model. In this section
we also show the relevant expressions for the new
intersubband-induced SO coupling � and those for the
Rashba � �and Dresselhaus �� SO couplings as well. In Sec.
IV we describe the quantum wells investigated and �briefly�
the standard self-consistent calculation performed. We
present our results and discussions in Sec. V. In this section
we focus specifically on realistic single and double-well sys-
tems. Section VI summarizes our work. In Appendixes A and
B we show details of our self-consistent scheme to solve the
relevant Schrödinger and Poisson equations.

II. k ·p APPROACH AND KANE MODEL

Here we briefly review the k ·p approach and use it to
obtain the 8�8 Kane model relevant for our derivation of
the new intersubband-induced SO coupling.19,20

A. Basics of the k·p method

The single-particle Hamiltonian for an electron with mo-
mentum p in a periodic potential19,22 V�r� with SO is

H =
p2

2m0
+ V�r� +

�

4m0
2c2�� �V�r� · p , �1�

where m0 is the bare electron mass and � is a vector operator
defined in terms of the Pauli matrices. With the help of
Bloch’s theorem �nk�r�=exp�ik ·r�unk�r� �unk�r� has the peri-
odicity of the underlying Bravais lattice� we can rewrite the
Schrödinger’s equation H�nk=�nk�nk, where n indexes the
distinct solutions for each k vector, in the form

�H�k = 0� + W�k��unk�r� = ��nk −
�2k2

2m0
�unk�r� , �2�

with

H�k = 0� = −
�2

2m0
�2 + V�r� +

�

4m0
2c2�� �V�r� · p , �3�

W�k� =
�

m0
k · �p +

�

4m0c2�� �V�r�� . �4�

As usual, to solve Eq. �2�, we expand unk in terms of the
eigenstates ul0 at k=0 �i.e., W�k=0�=0� obtained from

H�k = 0�ul0�r� = �l0ul0�r� , �5�

where l=1,2 , . . .N �in principle, N→	� indexes the discrete
set of levels at k=0 �note that Eq. �5� contains the SO inter-
action, even though W�0�=0�. Substituting

unk�r� = �
l=1

N

anl�k�ul0�r� �6�

into Eq. �2� and projecting the resulting expression onto the
ul�0�r� eigenstate, we find19

�
l=1

N ���l0 − �nk +
�2k2

2m0
�
ll�

+ 	l�

�

m0
k · p +

�2

4m0
2c2k · �� �V�r�
l��anl�k� = 0.

�7�

Here we use the notation 	r 
 l�=ul0�r� and define

	l�
A
l� = d3rul�0
� Aul0, �8�

with A denoting a Hermitian operator.

B. 8Ã8 Kane model—bulk case

As usual, in order to solve Eq. �7� we have to truncate the
basis set by considering a finite number N of zone-center
basis functions ul0�r�. In addition, since the k=0 Hamil-
tonian �Eq. �3�� contains a SO term, it is convenient to
choose linear combinations of basis functions which are
eigenstates of the total angular momentum J=L+S, and its z
component Jz; here L and S denote the orbital and spin an-
gular momenta, respectively. In II-VI and III-V �both
zincblend� compounds the relevant conduction and valence
bands arise from the “bonding” p-type and “antibonding”
s-type states, respectively. Following the notation of Refs. 19
and 23, we summarize in Table I the set of eight zone-center
wave functions we consider here �the kets 
JJz� are also
shown�, which are the eigenstates of the zone-center
Schrödinger Eq. �5� for the periodic part of the Bloch func-
tion. Note that we use the standard state vector notation 
S�,

X�, 
Y�, and 
Z� to denote the symmetry of the corresponding
“atomic orbitals” �tight-binding view�.

Using the ordered basis states u1 , . . . ,u8 in Table I we can
easily write out the matrix Hamiltonian �Eq. �7��19,20,24
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H8�8 =

⎣
⎢
⎢
⎢
⎡

�2k2

2m0
0 −

1
�2

Pk+ �2

3
Pkz

1
�6

Pk− 0 −
1
�3

Pkz −
1
�3

Pk−

0
�2k2

2m0
0 −

1
�6

Pk+ �2

3
Pkz

1
�2

Pk− −
1
�3

Pk+
1
�3

Pkz

−
1
�2

Pk− 0
�2k2

2m0
− Eg 0 0 0 0 0

�2

3
Pkz −

1
�6

Pk− 0
�2k2

2m0
− Eg 0 0 0 0

1
�6

Pk+ �2

3
Pkz 0 0

�2k2

2m0
− Eg 0 0 0

0
1
�2

Pk+ 0 0 0
�2k2

2m0
− Eg 0 0

−
1
�3

Pkz −
1
�3

Pk− 0 0 0 0
�2k2

2m0
− Eg − �g 0

−
1
�3

Pk+
1
�3

Pkz 0 0 0 0 0
�2k2

2m0
− Eg − �g ⎦

⎥
⎥
⎥
⎤

, �9�

where P is the usual Kane matrix element18

P = − i
�

m0
	S
px
X� = �� EP

2m0
, �10�

expressed in terms of the parameter EP �Ref. 25� and k�
=kx� iky. We have also used that 	S
px
X�= 	S
py
Y�
= 	S
pz
Z�. Equation �9� is the 8�8 Kane Hamiltonian18 de-
scribing the s-type conduction and p-type valence bands
around the  point in zincblend compounds. Note that the
diagonal elements in Hamiltonian �9� correspond to the
eigenenergies �l0 of Eq. �5�: �10=�20=0 �“conduction-band
states,” defined as the zero of energy�, �30=�40=�50=�60
=−Eg �“heavy” and “light” hole bands�, and �70=�80=−Eg
−�g �“split-off” hole band�. Here,

�g =
3�2

4m0
2c2 	X


�V

�y

�

�x
−

�V

�x

�

�y

Y� �11�

is the “atomic” SO parameter defining the split-off gap; see
Fig. 1�a�. Figure 1�a� schematically shows the conduction
and valence bands of a zincblend structure. The circles indi-
cate the k=0 eigenenergies.

The Kane model treats exactly the conduction-valence-
band couplings within the truncated set of eight band-edge
wave functions. It is important to emphasize that we have
neglected contributions from the k-dependent SO term in Eq.
�7�, when constructing the Kane Hamiltonian �9�.18 The SO
interaction is accounted for only within the zone-center
Schrödinger Eq. �5� �parameter �g above�. The diagonaliza-
tion of the Kane Hamiltonian gives the dispersions �n,k
around the  point. It is known that the Kane model pre-
sented here is not accurate for valence bands19 �e.g., wrong
sign of the heavy hole masses�. However, it provides a sim-
plified and accurate description for the conduction electrons,
which is the focus of our work. Next we discuss the Kane
model in the context of heterostructures.

C. Kane model for quantum wells

Following Refs. 19 and 20 we can straightforwardly gen-
eralize the bulk Kane model of Sec. II B to heterostructures.
Essentially, we have to introduce position-dependent �growth
direction� band gaps which represent the different com-
pounds comprising the heterostructure, e.g., Fig. 1�b�. In this
case, the form of the resulting Kane Hamiltonian is similar to
that of bulk but with z-dependent diagonal matrix elements
and with kz→−id /dz. More specifically, defining E6=H11
=H22, E8=H33=H44=H55=H66, and E7=H77=H88, we have
for the double quantum well of Fig. 1�b�

TABLE I. Truncated set of zone-center wave functions ul0 �for
simplicity we denote them by ul� used in constructing the matrix
Hamiltonian �9�.

ui  
J ,mJ� uJ,mJ

u1 6 
 1
2 , + 1

2 � i
S� � 
+ 1
2 �

u2 6 
 1
2 ,− 1

2 � i
S� � 
− 1
2 �

u3 8 
 3
2 , + 3

2 � − 1
�2

�
X�+ i
Y�� � 
+ 1
2 �

u4 8 
 3
2 , + 1

2 � − 1
�6

�
X�+ i
Y�� � 
− 1
2 �+� 2

3 
Z� � 
+ 1
2 �

u5 8 
 3
2 ,− 1

2 � + 1
�6

�
X�− i
Y�� � 
+ 1
2 �+� 2

3 
Z� � 
− 1
2 �

u6 8 
 3
2 ,− 3

2 � + 1
�2

�
X�− i
Y�� � 
− 1
2 �

u7 7 
 1
2 , + 1

2 � − 1
�3

�
X�+ i
Y�� � 
− 1
2 �− 1

�3

Z� � 
+ 1

2 �
u8 7 
 1

2 ,− 1
2 � − 1

�3
�
X�− i
Y�� � 
+ 1

2 �+ 1
�3


Z� � 
− 1
2 �
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E6 =
�2k2

2m0
+ VH�z� + h6�z� , �12�

E8 =
�2k2

2m0
+ VH�z� − h8�z� − Eg, �13�

E7 =
�2k2

2m0
+ VH�z� − h7�z� − Eg − �g, �14�

with k2=k�
2+kz

2, Eg and �g being the fundamental and split-
off band gaps in the well region, respectively, and

hi�z� = 
ihw�z� + 
bihb�z�, i = 6,7,8, �15�

where hw�z� is a dimensionless profile function describing
the shape of a square well of width Lw �and unit depth, Fig.
1�b��; similarly, hb�z� describes the shape of the central
square barrier, Fig. 1�b�. The parameters 
6, 
7, 
8, 
b6, 
b7,
and 
b8 denote the relevant band offsets between the well
and the lateral and central barriers for conduction and va-
lence bands. Defining the zero of energy at the bottom of the
conduction well �see Fig. 1�b��, we have


8 = Ew − Eg − 
6, 
7 = 
8 + �w − �g, �16�


b8 = Eb − Eg − 
b6, 
b7 = 
b8 + �b − �g. �17�

The corresponding expressions for a single well can readily
be obtained from the above by setting the 
bi’s to zero �i.e.,
no central barrier�.

Finally, note that we have added a “Hartree” potential
VH�z� in the diagonal elements; see Eqs. �12�–�14�. The Har-
tree potential VH�z� here contains contributions from the
electron-electron interaction �mean field� relevant in quan-
tum wells containing many electrons, the external gate po-
tentials, and the modulation-doped potential �i.e., ionized im-
purities outside the well region�. In Appendix A, we describe
in detail these distinct contributions to VH and how they are
calculated in our system. As we will see next, both VH�z� and
the structural confining potentials contribute to the effective
SO coupling for electrons.

III. EFFECTIVE SPIN-ORBIT HAMILTONIAN
FOR ELECTRONS

A. Folding down

Since we are interested in SO effects for the conduction
electrons, here we derive an effective Hamiltonian for them.
To this end, let us rewrite our 8�8 Hamiltonian �Eq. �9�� in
the block form

H8�8 = � Hc Hcv

Hcv
† Hv

� , �18�

where Hc is a 2�2 diagonal matrix in the sector 6 �con-
duction band� with identical diagonal elements E6 �Eq. �12��
and Hv is a 6�6 diagonal matrix in the sectors 8 and 7
�valence bands� with diagonal elements E8 �Eq. �13�� and E7
�Eq. �14��, respectively. The 2�6 matrix Hcv can be read off
directly from the corresponding 2�6 block in Eq. �9�.

Using the block form of our Hamiltonian �18� the eigen-
value problem can be written in the compact form

� Hc Hcv

Hcv
† Hc

���c

�v
� = E��c

�v
� , �19�

where �c is a two-component spinor �conduction sector� and
�v is a six-component spinor �valence sector�. Straightfor-
ward manipulations19,20 yield the effective Schrödinger-type
equation

H�E��̃c = E�̃c, �20�

with

H�E� = Hc + Hcv�E − Hv�−1Hcv
† , �21�

and �̃c is a properly renormalized conduction-electron
spinor.26

The matrix elements of H�E� are given by27

H�E�11 = H�E�22 = E6 +
P2

3
�k�

2�1 + kz�1kz� , �22�

H�E�12 = H�E�21
† =

P2

3
k−��2,kz� = −

P2

3
k−kz�2, �23�

where k�
2=k�k�=kx

2+ky
2 and

�1�z� = � 2

E − E8
+

1

E − E7
� , �24�

Γ7

Γ8

Γ6

∆g

Eg

δ6 δb6

δ7

δ8

δb7

δb8

Eg

∆g

Ew

∆w

Eb

∆b

Lw

Lb

(a) Energy band structure (b) Band offsets

FIG. 1. �Color online� �a� Schematic of the band structure of
direct gap zincblend semiconductors near the  point �k=0�. The
label 6 represents the s states in the conduction band, while 7

�split-off holes� and 8 �heavy holes and light holes� represent the p
states in the valence bands. �b� Band offsets for a double quantum
well of width Lw with a central barrier of width Lb. The relation-
ships among the several offset parameters are given in Eqs. �16� and
�17�.
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�2�z� = � 1

E − E8
−

1

E − E7
� . �25�

We should emphasize that Eq. �20� is not really an eigen-
value equation as H�E� depends on E. However, as we show
in Sec. III B, we can still obtain a true eigenvalue problem
by performing suitable expansions.

B. Energy denominator expansions

Since Eg and Eg+� are the largest energy scales in our
system, i.e.,

�8 =

E − ��2k2

2m0
+ VH�z� − h8�z��

Eg
� 1, �26�

�7 =

E − ��2k2

2m0
+ VH�z� − h7�z��

Eg + �g
� 1, �27�

we can expand the energy denominators in the �i’s �Eqs. �24�
and �25�� in the form

�1 =
2

Eg
�1 − �8 + ¯� +

1

Eg + �g
�1 − �7 + ¯� , �28�

�2 =
1

Eg
�1 − �8 + ¯� −

1

Eg + �g
�1 − �7 + ¯� . �29�

For the diagonal matrix elements H�E�11=H�E�22 we keep
only zeroth-order �i.e., energy-independent� terms, while for
the off-diagonal matrix elements H�E�12=H�E�21

† we keep in
addition the first-order terms as they give the lowest nonva-
nishing contribution �because the off-diagonal matrix ele-
ments contain derivatives with respect to z�. Straightfor-
wardly, we then obtain the energy-independent electron
Hamiltonian

H�E� = HQW1 + ��z�� 0 − ik−

ik+ 0
� , �30�

where

HQW =
�2k�

2

2m�
+
�2

2m�

�2

�z2 + Vsc�z� , �31�

�the subscript “sc” emphasizes that the potential is to be de-
termined self-consistently—see Appendixes A and B� and15

1

m�
=

1

m0
+

2P2

3�2� 2

Eg
+

1

Eg + �g
� , �32�

Vsc�z� = VH�z� + 
6hw�z� + 
b6hb�z� , �33�

��z� = �w
dhw�z�

dz
+ �b

dhb�z�
dz

− �H
dVH�z�

dz
, �34�

with

�H =
P2

3 � 1

Eg
2 −

1

�Eg + �g�2� , �35�

�w =
P2

3 � 
8

Eg
2 −


7

�Eg + �g�2� , �36�

�b =
P2

3 �
b8

Eg
2 −


b7

�Eg + �g�2� . �37�

C. Projection into the quantum-well subbands

Here we define a quasi-two-dimensional model starting
from the three-dimensional �3D� Hamiltonian �30�. The idea
is essentially to obtain a 2D effective model similar to the
well-known Rashba model, but now for the case of wells
with many subbands. To this end we �i� first project Eq. �30�
into the spin-degenerate eigenstates of HQW �Eq. �31�� �note
that HQW does not contain the SO interaction�:28 
k�v��z
= 
k�v�
�z�, 	r 
k�v�=exp�ik� ·r���v�z�, v=0,1 ,2 , . . ., and �z
=� �or ↑ ,↓�, which correspond to the subband energies

Ek�v=
�2k�

2

2m� +Ev, with Ev being the quantized levels of the well,
and then �ii� consider a reduced set of subbands �e.g., two�
by truncating the basis set used. In this section we simply
assume that we know the eigensolutions of HQW; later on we
actually calculate them within a self-consistent procedure,
from which we can explicitly determine the relevant SO cou-
pling constants in our problem.

The matrix elements of H��� in the �
k�v��z
� basis are

	k�v
	� 
H�E�
k�v��
� � = ��2k�
2

2m�
+ Ev�
vv�, �38�

	k�v
	� 
H�E�
k�v��
� � = � i�vv�k�, �39�

with the generalized SO couplings

�vv� = vv�
H + vv�

w + vv�
b , �40�

where

vv�
H = − �H	v


dVH�z�
dz


v�� , �41�

vv�
w = + �w	v


dhw�z�
dz


v�� , �42�

vv�
b = + �b	v


dhb�z�
dz


v�� . �43�

The coefficients vv�
H , vv�

w , and vv�
b denote the contributions

from the Hartree potential, the quantum-well edges, and the
central barrier edges, respectively. It is convenient to split the
Hartree contribution into two terms, i.e., VH�z�=Ve�z�
+Vg�z�, where Ve�z� is the purely electronic Hartree potential
and Vg�z� denotes the contributions from the external gate
potential and the modulation doping potential. Hence vv�

�H�

=−�H	v

dVe�z�

dz 
v��−�H	v

dVg�z�

dz 
v��. This separation will be
useful when discussing our results.

We emphasize that the diagonal �in v ,v�� parameters �vv
correspond to the Rashba coupling in the vth subband, i.e.,
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�v=�vv. The off-diagonal terms �vv� arise due to the inter-
subband coupling. Interestingly, these new SO terms can be
nonzero even in structurally symmetric wells, since they
arise from quantum-well states of distinctive parities.

For completeness we present here the linearized Dressel-
haus couplings29 in the vth subband

�v = �D	v
kz
2
v� , �44�

where the constant �D is the bulk Dresselhaus SO
parameter.21 We can easily rewrite the above expression in
the more convenient form

�v = �D
2m�

�2 �Ev − 	v
V�z�
v�� . �45�

In Sec. V we shall use the above form to discuss how the
Dresselhaus couplings vary as a function of the system pa-
rameters.

D. Two-subband case

To illustrate the procedure of Sec. III C, let us explicitly
work out here the case of a quantum well with only two
subbands v=0,1. In Sec. V we shall investigate in detail the
SO couplings for single and double quantum wells with two
subbands.

1. 4Ã4 Hamiltonian

With the basis ordering �
k�0�↑ , 
k�0�↓ , 
k�1�↑ , 
k�1�↓�, Eqs.
�38� and �39� yield the effective Hamiltonian

H =�
Ek�0 − i�0k− 0 − i�k−

i�0k+ Ek�0 i�k+ 0

0 − i�k− Ek�1 − i�1k−

i�k+ 0 i�1k+ Ek�1

� , �46�

where the Rashba couplings are given by �v=�vv, v=0,1,
and the intersubband SO coupling30 by �=�01 �see Eqs.
�40�–�43�� and

Ek�v = Ev +
��k��2

2m�
, v = 0,1. �47�

2. Eigensolutions

The energy eigenvalues E�� of Eq. �46� are straightfor-
ward to obtain:

Ek�,�1,�2
= Ek�+

+ �2�+k� + �1���k��2 + �Ek�−
+ �2�−k��2,

�48�

where �2=� are spin quantum numbers and �1=� are the
subband �or pseudospin� indices, and

Ek��
=

1

2
�Ek�1

� Ek�0
�, �� =

1

2
��1 � �0� . �49�

The corresponding �normalized� eigenvectors are

	r�
k�,�1,�2� =�1 + �1

��2
�0�

��2
����

− i�1�k�e−i�

��2
��� + �1��2

�0�

�1�2�k�

��2
��� + �1��2

�0�

− i�2e−i�

1

� eik�·r�

4�
,

�50�

where

����� = ���k��2 + �Ek�−
� �−k��2, e�i� =

k�
k�

. �51�

3. SO-induced effective-mass renormalization

Expanding the energy dispersions �Eq. �48�� around k�

=0, we obtain to second order

Ek�→0,�1,�2
� E+ + �1E− + �2��+ + �1�−�k� +

�2k�
2

2m�1

� , �52�

where m�1

� are the effective masses

m�
� =

m�

1�
2ESO

�E

, �53�

where ESO= 1
2m��2 /�2 and �E=2E−. Note that the mass

renormalization is solely due to the intersubband-induced SO
coupling �. For the realistic wells we investigate here
2ESO /�E�1 for single wells but can reach �0.1 for double
wells �Secs. IV and V�.

4. Determining the SO couplings

As mentioned previously, we determine the SO orbit cou-
plings �here specifically �0, �1, and �� from the self-
consistent eigensolutions of the quantum well without spin
orbit,28 via Eqs. �40�–�43�. In Sec. IV we detail the quantum-
well systems investigated and briefly outline the self-
consistent procedure used to obtain the eigensolutions �a full
description is provided in Appendixes A and B�. We then
present results for single and double wells with two sub-
bands; i.e., we calculate �0, �1, and � and discuss in detail
the several distinct contributions to each of these quantities.

IV. QUANTUM-WELL SYSTEMS
AND SELF-CONSISTENCY

Figure 2 shows a schematic view of the quantum-well
system we study: a well of width Lw centered at z=0 �z:
growth direction�, and two adjacent symmetrically doped re-
gions of widths w in the barriers. We also consider double
wells by inserting an additional �central� barrier of width Lb
in the well region. The doping densities of the left and right
regions, �a and �b, respectively, can be used to control the
degree of structural inversion asymmetry of the wells �in
Sec. V, however, we present results only for �a=�b�. The
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external gates Va and Vb, located at the end points �L, can
also be used to control the degree of inversion asymmetry
and to vary the areal electron density in the well.

Since our wells have many electrons and are subject to
external gates, we have to solve the Schrödinger and Poisson
equations self-consistently �“Hartree approximation”31� in
order to determine their potential profile Vsc�z� �see Eq. �33��
and corresponding eigenfunctions and eigenenergies. In Ap-
pendixes A and B we describe in detail our standard self-
consistent procedure.

Before going into the discussion of the SO couplings in
detail, let us first have a look at the outcome of a typical
self-consistent simulation we perform. Figure 3�a� shows the
self-consistent potential Vsc �thick solid line� for a single well
with two subbands; the corresponding self-consistent wave
functions �0�z� and �1�z� are also shown. The energies of the
two lowest subband edges �see levels in the well� are E0
=309.09 meV and E1=406.39 meV ��E=97.3 meV�. Here
we fix the chemical potential at �=413.40 meV with respect
to the V=0 origin �“constant chemical potential model,” see
below� and set the external gates to Va=0 and Vb
=1200 meV. The two subbands are occupied with areal den-
sities n0=18.7422�1011 cm2 and n1=1.2578�1011 cm2,
respectively. The electronic Hartree potential Ve �short
dashed line� and the the external gates �plus modulation dop-
ing� contribution Vg �long dashed line� are also shown. Fig-
ure 3�b� shows the corresponding “force fields” Fe=
−dVe /dz arising from the confined electrons in the well and
Fg=−dVg /dz coming from the doping regions ��12 nm to
�18 nm� plus the external gates �Fg and Fe will be useful
when discussing the SO couplings further below�. Using the
self-consistent solutions �v�z�, v=0,1, we can straightfor-
wardly calculate the relevant SO couplings �via Eqs.
�40�–�43��: �=−3.81 meV nm, �0=−5.44 meV nm, �1=
−3.74 meV nm, �0=0.87 meV nm, and �1=2.50 meV nm.

V. RESULTS

Here we focus on single and double quantum wells with
only two subbands. More specifically, we calculate three SO
couplings: the intersubband-induced SO coupling �=�01 and
the two Rashba-type couplings �0=�00 and �1=�11. We con-
sider two experimentally relevant cases: the constant areal
density �nT-constant� and the constant chemical potential
��-constant� models. In our simulations we always keep Va
=0 as a reference potential and vary Vb; see Fig. 2. For

completeness, we also calculate the two Dresselhaus con-
stants �0 and �1 �see Eq. �44�� within each subband.

A. Single wells

1. Single-well parameters

We consider a realistic Al0.48In0.52As /Ga0.47In0.53As single
quantum well.32,33 We assume doping densities �a=�b=4
�1018 cm−3 with widths w=6 nm �“sample 3” in Ref. 32�.
Table II summarizes band parameters, potential offsets,25

well widths, and other important parameters of our system.
The coefficients �w and �H in Table II are defined in Eq. �36�
and Eq. �35�, respectively. Here, the Dresselhaus parameter
�D in Eq. �44� is assumed to be the same as that of the GaAs
�see Ref. 21�.

−L +L

−Ld +Ld

0

w w

ρa ρb

Va Vb

Lw

Quantum Well

dopants

FIG. 2. �Color online� Schematic view of our quantum-well sys-
tem. The doping densities �a, �b and the external gate voltages Va

and Vb can be used to control the degree of the structural inversion
asymmetry.
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FIG. 3. �Color online� �a� Self-consistent potential energy Vsc

�thick solid line� and the corresponding wave functions �0 and �1

for the single well Al0.48In0.52As /Ga0.47In0.53As with external gates
Va=0 eV and Vb=1.2 eV �see Fig. 2�. The electronic Hartree po-
tential Ve �short dashed line�, the external gate plus modulation
doping contributions Vg �long dashed line�, and the corresponding
force fields Fe=−dVe /dz and Fg=−dVg /dz are also shown in �b�.
The two levels in the well �solid lines� denote the energies of the
first and second subband edges, while the dotted level indicates the
chemical potential.
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2. SO couplings: single wells

Figure 4 shows the strength of the Rashba ���, �=0,1;
dashed lines�, Dresselhaus ���, �=0,1; dotted lines� and
intersubband-induced ��, solid line� SO couplings as func-
tions of the gate voltage Vb, for both the nT-constant and the
�-constant models, Figs. 4�a� and 4�b�, respectively. At Vb
=Va=0 eV, our sample is completely symmetric and, as ex-

pected, the Rashba couplings �0 and �1 are zero. We note
that the Dresselhaus couplings �0 and �1 are practically con-
stant in both models. This follows from Eq. �45� which
shows that in each subband the Dresselhaus coupling is es-
sentially the difference between the expected value of the
self-consistent potential in the respective subband and the
corresponding eigenenergy. The Rashba couplings, on the
other hand, vary considerably with Vb, although showing a
similar trend in both models. Interestingly, they change signs
about Vb=0 �symmetric configuration�, but always with

�0
� 
�1
. Our calculated �0 within the �-constant model
�Fig. 4�b�� is consistent with the measurements of this quan-
tity by Koga et al.,32,33 whose samples have a constant
chemical potential.

The new intersubband-induced coupling � �see the solid
lines in Figs. 4�a� and 4�b�� is nonzero even in the symmetric
well configuration �Vb=0=Va�. It has a strength comparable
to the Rashba and is at least twice as large as the Dressel-
haus. In contrast to the Rashba couplings, the intersubband
SO � does not change sign with Vb. In fact, for the single
well investigated here � is almost constant with Vb, although
it varies slightly more in the �-constant model �compare the
solid curves in Figs. 4�a� and 4�b��.

To more easily understand the results above, we analyze
the several contributions to the SO couplings separately. To
this end, we rewrite �see comments following Eq. �40�� �vv�
for a single well in the form

�vv�
SW = vv�

e + vv�
g + vv�

w , �54�

where we have set vv�
b =0 in Eq. �40�, i.e., no central barrier

contribution, and have split the Hartree contribution into its
purely electronic vv�

e and the external gate �plus doping po-
tential� vv�

g parts. Hence, for two subbands, each of the SO
couplings has three contributions: �=�01

SW=01
e +01

g +01
w ,

�0=�00
SW=00

e +00
g +00

w , and �1=�11
SW=11

e +11
g +11

w . Fig-
ures 5�a�–5�c� show the above contributions separately for
the nT-constant case �similar results hold for the �-constant
model, in the parameter range studied�.

Figure 5�a� shows that the external gates and doping con-
tributions to � �01

g curve� are essentially zero, while the
electronic Hartree contribution �01

e curve� and the structural
�01

w curve� contributions are comparable in magnitude and
both negative. In contrast, for both �0 and �1 the largest
contributions come from the external gates together with
doping regions �see the curve 00

g in Fig. 5�b� and the curve
11

g in Fig. 5�c��; these account for 60% of �0 and 100% of
�1. The electronic Hartree contribution is negligible in �0
�curve 00

e in Fig. 5�c�� while the structural part �00
w � ac-

counts for about 30% of it. On the other hand, the structural
and electronic Hartree contributions in �1 essentially cancel
out �same magnitude and opposite signs�; cf. the 11

e and 11
w

curves in Fig. 5�c�.
We can understand the above remarks by looking at

the self-consistent potentials and the “force fields” Fe
=−dVe�z� /dz �short dashed curve� and Fg=−dVg�z� /dz �long
dashed curve�—note that vv�

i �	v
Fi
v�, i� �e ,g ,w�,—in
Fig. 3�b�. This figure was obtained for Vb=1.2 eV, but it
does display the general behavior for all quantities shown.

TABLE II. Relevant parameters �Ref. 25� �see Fig. 1� �at 0.3 K�
for the single quantum well Al0.48In0.52As /Ga0.47In0.53As system in
our simulations. The doping regions have widths w=6 nm and den-
sities �a=�b=4�1018 cm−3 �see Fig. 2�. All energies are in eV and
lengths in nm; the coefficient �H is in nm2 and �w in meV nm2. The
Dresselhaus coupling constant �Ref. 21� �D is in meV nm3.

Ew=1.5296 �w=0.2998 w=6 EP=25.3

Eg=0.8161 �g=0.3296 
6=0.52 m� /m0=0.043

Eb=0 �b=0 
b6=0 �r=14.013

L=40 Ld=18 Lb=0 Lw=14

�H=0.2376 �w=0.0533 �b=0 �D=0.0237
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FIG. 4. �Color online� Rashba �, Dresselhaus �, and
intersubband-induced � SO coupling constants for the
Al0.48In0.52As /Ga0.47In0.53As quantum well as functions of the gate
voltage Vb �see Fig. 2�. In �a� the total 2D electron density is kept
constant at nT=20�1011 cm−2 and in �b� the chemical potential is
kept constant at �=200 meV.
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The force field Fg is essentially constant, except within the
donor regions where the wave functions are vanishingly
small. Hence, the matrix element 	v
Fg
v� �see Eqs.
�40�–�43�� is approximately linear in the external gate Vb.
This explains why the Rashba couplings �v are strongly
modulated by external gates. This is even more so for �1,
Fig. 5�c�, for which the structural and electronic contribu-

tions cancel out. Looking at the wave functions �0 and �1
and the force field Fe=−dVe /dz in Fig. 3�b�, we can see that
the electronic Hartree contribution ��−	v
Fe
v�� is almost
zero �though slightly negative� for the lowest subband and
positive for the first subband. The structural well contribu-
tions vv

w �see Eq. �42�� to �v are similar for both subbands,
though 
00

w 
� 
11
w 
, because the nonzero biases �Vb�0�

cause the wave functions to shift toward one side of the well
�e.g., Vb=1.2 eV in Fig. 3�a��.

On the other hand, the contribution 01
g �−	0
Fg
1� to the

intersubband coupling � is essentially zero since the wave
functions ��0 and �1 in Fig. 3�a�� are orthogonal and, again,
Fg is constant. Hence � is not as sensitive to the external
gates as the Rashba couplings. Most of the modulation of �
arises from the electronic Hartree and structural contribu-
tions, which both have the same sign and magnitude as
shown in Fig. 5�a�.

B. Double well

1. Double-well parameters

Table III shows the band parameters21,25 for the double
quantum well Al0.4In0.6Sb / InSb with one central barrier
InSb /Al0.12In0.88Sb. Hereafter we refer to this heterostructure
as InSb double well. The meaning of some of these param-
eters �e.g., band offsets� can be seen in Figs. 1 and 2.

2. SO couplings: double-well case

Figure 6 shows the Rashba �, Dresselhaus �, and
intersubband-induced � SO couplings as functions of the
gate voltage Vb �here again Va=0� for both the nT-constant
�a� and �-constant �b� models. We first discuss the
nT-constant model �Fig. 6�a��. Here the Rashba couplings
�dashed lines� are most sensitive to the external bias Vb, be-
ing essentially the largest of all SO couplings for very asym-
metric structures �i.e., high biases�. The Dresselhaus cou-
plings �dotted lines� are almost identical ��0��1� and
mostly independent of the external gates. The SO coupling �
�solid line� is an even function of the external gate Vb and
presents a “resonant behavior” around the Vb=Va=0 eV
configuration, at which our sample is symmetric. While the
Rashba couplings are both zero at this symmetric configura-
tion, we note that they are odd functions of the external gate
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FIG. 5. Several distinct contributions to the coupling constants
� �a�, �0 �b� and �1 �c� for the single GaInAs quantum well shown
in Fig. 4�a� �nT-constant model� as functions of the external gate Vb

�Va=0�. These contributions arise from the electron density �Har-
tree potential�, the external gate �together with donor regions�, and
the structural well potential; these are denoted by the superscripts e,
g and w, respectively.

TABLE III. Relevant parameters �Refs. 21 and 25� �at 1 K� for
the InSb double well �see Figs. 1 and 2�. The width of the doping
regions is w=4 nm and their densities are �a=�b=3�1018 cm−3.
All energies are in eV and lengths in nm. The coefficient �H is
measured in nm2 while �w and �b are measured in meV nm2. The
Dresselhaus constant �D is measured in meV nm3. The parameters
in the last column are to the InSb binary compound.

Ew=0.9922 �w=0.6964 w=4 EP=23.3

Eg=0.2350 �g=0.8100 
6=0.6133 m� /m0=0.0135

Eb=0.4477 �b=0.7675 
b6=0.1723 �r=16.8

L=100 Ld=65 Lb=20 Lw=50

�H=0.2171 �w=0.7627 �b=5.0873 �D=0.326
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�with 
�0
� 
�1
�, have opposite signs, and abruptly change
magnitudes around Vb=0 �over a 40 meV wide region�. For
the �-constant model �Fig. 6�b��, a similar picture as above
also holds; note, however, that in contrast to the nT-constant
model, in the �-constant case the positive and negative bias

configurations are not equivalent as they correspond to the
well having different numbers of electrons.

For completeness we show in Fig. 7 the behavior of all
coupling constants near the symmetric point Vb=Va=0 eV
for the double well in Fig. 6�a�. Note that the Dresselhaus
couplings �0 and �1 present a �double� crossing over a 160
meV wide region; see Fig. 7�b� �however, this is a minor
effect: note the change in the scale of the vertical axis�.
While the resonant behavior of � is accompanied by an en-
hancement of about 10 in its magnitude �see Fig. 6�a��, we
see no substantial change in the magnitudes of the �’s near
the zero-bias case �cf. Figs. 7�a� and 7�b��.

The relative strengths of the Rashba and Dresselhaus cou-
pling constants to the intersubband-induced SO coupling are
shown in Fig. 8. The Rashba couplings have the largest
strengths �note the prefactors in front of �v /� in the leg-
ends�. In contrast to �v /�, the linear behavior of the Rashba
ratios �v /� near Vb=0 �see insets� shows that �v and �
undergo similar variations near the symmetric configuration.
As observed before, the intersubband-induced coupling � be-
comes important near Vb=0 �Fig. 6�.

Figure 9 �similar to Fig. 5 for the single-well case� shows
the several contributions to each of the SO couplings �, �0,
and �1 for the double-well case. Here, in addition to the
electronic Hartree, the gate �+ doping regions�, and the well
contributions, there is an additional structural term arising
from the central barrier �superscript b�. A general feature in
Figs. 9�a�–9�c� is that the structural contributions �well and
central barrier� almost cancel out because they have opposite
signs �see the curves with superscripts w and b�. These terms
have opposite signs because the derivatives dhw�z� /dz �well�
and dhb�z� /dz �barrier�, which enter the coupling constants
�see Eqs. �40�, �42�, and �43��, have opposite slopes. Simi-
larly to the single-well case �Fig. 5�a�� the contribution of the
external gates �which includes the doping regions� to the
intersubband SO coupling � is vanishingly small �see the 01

g

curve in Fig. 9�a��. Hence, � is mostly due to the electronic
Hartree contribution �curve 01

e in Fig. 9�a��. In addition, the
gate contribution to �0 and �1 for the InSb double well is
linear in Vb as for the single-well case. Hence, the Rashba
couplings �0 and �1 for the double InSb well are essentially
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FIG. 6. �Color online� Rashba �, Dresselhaus �, and the
intersubband-induced � SO couplings for a InSb double quantum
well as functions of the right gate voltage Vb. In �a� the total elec-
tron density is kept constant at nT=10�1011 cm−2 and in �b� the
chemical potential is kept constant at �=100 meV �relative to ini-
tial bottom well�.
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determined by the electronic �Hartree� contribution and are
modulated by the gate contribution. Summarizing: looking at
Fig. 9, we can see that �i� the structural contributions �well
and barrier; dashed curves� almost cancel out, and �ii� the
external gate �dotted curves� modulates the Rashba couplings
�v; therefore, for the double well investigated here �iii� most
of the strength of these three coupling constants ��, �0, and
�1� comes from the electronic contribution �dot-dashed
curves�.

It is instructive to investigate in more detail how the reso-
nant behavior in � comes about, as well as the abrupt
changes in the Rashba couplings; see Fig. 6. This can be
accomplished by looking more closely at the self-consistent
wave functions of the InSb double well around the symmet-
ric configuration �Vb=0�. The top row in Fig. 10 shows the
self-consistent potential profile of the double well and the
normalized wave functions �0 �short dashed line� and �1
�long dashed line� for the lowest v=0 and for the first excited
v=1 subbands at three distinct gate voltages: Vb= +0.3 eV,
Vb=0 eV, and Vb=−0.3 eV �left, center, and right columns,
respectively�. For positive bias �0 is mostly localized in the
left well and �1 in the right well, while for negative biases
this configuration is reversed. The electronic Hartree contri-
bution to the potential energy Ve and the corresponding force
field Fe=−dVe /dz are shown on the second row, thin and
thick lines, respectively. Notice that Fe is practically zero in
the central barrier region �−10�z�10 nm� and has oppo-
site signs within the wells �−25�z�−10 nm and 10�z
�25 nm�. Hence the quantities Fe

00�z�=�0�z�Fe�0�z�,
Fe

11�z�=�1�z�Fe�1�z�, and Fe
01�z�=�0�z�Fe�1�z� have the

forms shown on the third and fourth rows. The integral over
z of these quantities defines the electronic Hartree contribu-
tions to the spin-orbit couplings �0, �1, and �, i.e., 00

e

�	0
Fe
0�, 11
e �	1
Fe
1�, and 01

e �	0
Fe
1�, respectively.
Since the electronic Hartree contributions dominate over the
others, see Figs. 9�a�–9�c�, the abrupt changes in the Rashba
couplings and the resonant behavior of � around Vb=0 fol-
low straightforwardly.

3. Density anticrossings and effective masses

Figures 11�a� and 11�b� show anticrossings of the areal
densities nT for the InSb double well near the symmetric

configuration Vb=0,34 where the strength of the
intersubband-induced SO coupling � is the strongest
�−16.7482 meV nm� while the the energy difference be-
tween the subband edges �E=E1−E0 �0.9353 meV� is the
smallest. In accord with Eq. �52�, we find an appreciable
change in the bulk effective mass m� near k� =0.35 The ratio
ESO /�E �see Eq. �53�� is shown in Fig. 11�c� and the ratio
m̄�=m�

� /m� in Fig. 11�d�. These intersubband-SO-induced
changes in the effective masses m�

� may have a sizable effect
on the measured mobilities and cyclotron frequencies in InSb
wells.

VI. SUMMARY

Starting from the 8�8 Kane model in heterostructures,
we have derived in some detail an effective electron Hamil-
tonian which contains a new intersubband-induced SO inter-
action term which arises in quantum wells with more than
one quantized subband. Unlike the usual Rashba SO term,
the intersubband SO coupling here is nonzero even for sym-
metric wells. For structurally asymmetric wells we have also
accounted for the Rashba-type SO interaction within each
subband.

We have also outlined the projection procedure �“folding
down”� to obtain quasi-2D Hamiltonians by integrating out
the confined variables. For two subbands in asymmetric
wells we find a 4�4 quasi-2D Hamiltonian resembling
Rashba’s, but containing three SO couplings: the two Rashba
couplings �0 and �1 and the intersubband SO coupling �.
For this two-subband case, we have investigated thoroughly
these three SO couplings for realistic modulation-doped
single and double wells. By performing a detailed self-
consistent calculation in which we solve both Poisson’s and
Schrödinger’s equation iteratively, we have determined the
strengths of �0, �1, and �.

Each of these coupling strengths contains contributions
arising from �i� the potential-well �and barrier� offsets, �ii�
the electronic Hartree potential, and �iii� the external gate
potential plus the modulation doping potential. We have per-
formed our simulations by either keeping the areal electron
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density nT in the well fixed �nT-constant model� or by keep-
ing the chemical potential � fixed ��-constant model�. In the
parameter range investigated, both models give similar result
for the calculated SO couplings.

For the single well investigated, �0 is mostly determined
by the external gate �+ modulation doping� contribution,
with the structural+electronic Hartree being about half of
that of the gate. On the other hand, �1 is essentially deter-

mined by the external gate �+ modulation doping� contribu-
tion, since the electronic Hartree and the structural contribu-
tions cancel out. The intersubband SO coupling � is
essentially determined by the electronic Hartree potential and
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FIG. 9. Different contributions to the SO couplings �, �0, and
�1 for the InSb double well in the constant areal density model �see
Fig. 6�a�� as functions of the external gate Vb �Va=0�. In the sub-
figures we show the contributions to the coupling constants coming
from the areal electronic density, indicated by the superscript e, and
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FIG. 10. �Color online� Top row: Wave functions �0 and �1 for
the InSb double well �Sec. V B 1� with external biases Vb=
+0.3 eV, Vb=0 eV, and Vb=−0.3 eV �first, second, and third col-
umns, respectively�. The electronic Hartree contribution Ve�z� to the
potential energy and the corresponding force field Fe=−dVe /dz are
shown on the second row. The third row shows the quantities
Fe
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11�z�=�1Fe�1 and the bottom row shows

Fe
01�z�=�0Fe�1. Here nT=10�1011 cm−2. The vertical dotted lines
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the structural potential contributions �both of the same or-
der�; the external gate �+ modulation doping� potential con-
tribution to � is nearly zero. Hence, while �0 and �1 can be
modulated by the external gate potential, � is only slightly
influenced by it.

For double wells the SO couplings show more peculiar
behaviors. While the Rashba couplings �0 and �1 abruptly
change magnitudes and signs around the symmetric configu-
ration �zero external bias�, the intersubband-induced SO cou-
pling presents a resonant behavior being enhanced by a fac-
tor of 10 �with no sign change� around this point. For the
double well investigated the structural contributions to �0, �1
and �, due to the potential offsets of the edges of the well
and the central barrier, cancel out. In addition, the contribu-
tion of the external gate �+ doping region� to � is vanishingly
small �as for the single-well case�. Interestingly, the domi-
nant contribution to all three SO couplings �0, �1, and �
comes from the electronic Hartree potential. However, this
contribution is highly influenced by the external gate, par-
ticularly around the symmetric configuration as the electrons
can easily localize in either well for slight �positive or nega-
tive� changes in the gate.

Finally, we have also calculated the effective-mass renor-
malization due to the intersubband SO interaction �the
Rashba-type interaction does not produce a mass change�.
For the double well investigated, we find that this mass
renormalization is the largest ��10%� around the symmetric
potential configuration �zero external bias�, for which the
splitting of the two subbands is the smallest. This mass
change can possibly have an effect on mobility and
cyclotron-resonance measurements.
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APPENDIX A: SELF-CONSISTENT PROCEDURE

1. Effective Schrödinger equation

The single-particle electron Hamiltonian HQW of our
quantum wells �Eq. �31�� is clearly separable. The transverse
motion �x ,y� is free while that along the z direction is con-
fined by the quantum well. To solve the corresponding
Schrödinger equation HQW�k�v�r�=Ek�v�k�v�r� we assume a
wave function of the form

�k�v�r� = 	r
k�v� =
1

�A
exp�ik� · r���v�z� , �A1�

�A is a normalizing area� which leads to the 1D Schrödinger
equation

�−
�2

2m

d2

dz2 + Vsc�z���v�z� = �Ek�v −
�2k�

2

2m� � = Ev�v�z� ,

�A2�

from which we obtain the quantized energy levels Ev and
wave functions �v�z�. As we shall see, the subband structure

of the well Ek�v=Ev+�2k�
2 /2m� and the corresponding total

wave function �k�v�r� will be used �within a self-consistent
procedure� to construct the electron charge density, from
which the corresponding Hartree potential can be obtained
via the Poisson equation.

As mentioned in Sec. III B Vsc in Eq. �A2� contains not
only the structural confining potential but also the “Hartree
contributions:” �i� the purely electronic mean-field potential
�electronic Hartree potential� and �ii� the external gate poten-
tial plus the modulation doping potential. Further down we
discuss these contributions in detail. Each of these contribu-
tions is determined from a Poisson equation with an appro-
priate charge distribution and boundary condition.

a. Self-consistency

Since the electronic charge distribution �e�z�
���v
	r 
k�v�
2� depends on the detailed form of the several
potentials �modulation doping, gates, and electronic Hartree�,
and these, in turn, depend on �e�z�, we have to solve the
problem self-consistently. The standard procedure is as fol-
lows: �i� to solve Eq. �A2� with an initial guess for Vsc which
we take to be just the structural potential plus the external
gates and modulation doping potential �i.e., in the first run
we do not include the electronic Hartree potential Ve�z��; �ii�
to construct the electronic charge density �e�z� �from the
eigenfunctions obtained in step �i�� and the corresponding
Ve�z� via Poisson equation; and �iii� to solve again the
Schrödinger equation with the new Vsc, which in this new
iteration includes Ve�z� �as well as the other potentials: gates,
modulation doping, and structural confinement�. We repeat
this process until convergence is attained.

b. Numerics

We use the sixth-order Numerov method to solve the
Schrödinger equation.36–39 Poisson equation �see Appendix
A 2� is solved via a semianalytical Numerov method.40 All
numerical integrations are performed using a Gaussian inte-
gration method.41 In our numerical implementation we use
the dimensionless form of Eq. �A2�,

d2�̃v

dz̃2 = Ṽv�̃v, �̃v = �v�z̃�, z̃ =
z

l
, �A3�

where

Ṽv =
2�

�1
�Vsc�z̃� − Ev�, �1 =

��2

m�l2 . �A4�

We choose l=1 nm as our length unit and �1 as the relevant
energy scale.

2. Poisson equations for the electronic and gate plus
modulation doping potentials

The self-consistent electronic potential energy Vsc�z�
=−e sc�z� can be split in two parts, Vsc�z�=Vwb�z�+VH�z�.
Vwb�z�=Vw�z�+Vb�z� described the structural quantum-well
potential. The “Hartree” contribution VH�z�=Ve�z�+Vg�z�
arises from the electronic charge density and from the exter-
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nal gates plus the modulation doping regions �symmetrically
located around the well; see Fig. 12�. Figure 12 also shows
the Dirichlet boundary conditions Va and Vb, which are in
fact the external gates at the end points �L of our system.

a. Gate+modulation doping potential

We can write separate Poisson equations for Vg�z� and
Ve�z� as these arise from distinct charge densities. For Vg�z�
we have �see Fig. 12�

d2

dz2Vg =
e2

�r�0�
0, �I�:− L� z� − Ld,

�a, �II�:− Ld � z� − Ld + w ,

0, �III�:− Ld + w� z� Ld − w ,

�b, �IV�:Ld − w� z� Ld,

0, �V�:Ld � z� L ,
�

�A5�

where �0 is the permittivity, �r is the dielectric constant,42,43

and �a,b are the doping densities. From the continuity of
Vg�z� and its first derivative and assuming the Dirichlet
boundary conditions Vg�−L�=Va and Vg�+L�=Vb, we find

Vg =�
c1z + c2, �I�:− L� z� − Ld,
1
2Az2 + c3z + c4, �II�:− Ld � z� − Ld + w ,

c5z + c6, �III�:− Ld + w� z� Ld − w ,
1
2Bz2 + c7z + c8, �IV�:Ld − w� z� Ld,

c9z + c10, �V�:Ld � z� L ,
�
�A6�

with

A =
e2�a

�r�0
, B =

e2�b

�r�0
, �A7�

where the constants ci are given in Appendix B. Figure 12
shows two solutions of Eq. �A5�, both having �a��b and
Va=Vb �dashed line� and Va�Vb.

b. Electronic Hartree potential

The electronic Hartree contribution Ve�z� is determined
from

d2

dz2Ve�z� = −
e

�r�0
�e�z� , �A8�

with �including spin�

�e�z� =
2e

A
�
v,k�


�v�z�
2f�Ek�v� =
em�

��2kBT�e�z� , �A9�

where

�e�z� = �
v


�v�z�
2ln�1 + e���−Ev�/kBT� , �A10�

and

f�Ek�v� =
1

1 + e�Ek�v
−��/kBT , Ek�v =

�2k�
2

2m�
+ Ev. �A11�

We solve Eq. �A8� for Ve�z� using an accurate Numerov
scheme40 with the Dirichlet boundary conditions Ve��L�=0.
Similarly to the Schrödinger equation in Eq. �A3�, we find it
convenient here to write the Poisson Eq. �A8� in a dimen-
sionless form

d2

dz̃2 Ṽe = − �̃e, �̃e =
kBT

�1
l�e�z̃�, �2Ṽe = Ve�z̃� ,

�A12�

where �1 is the energy scale given in Eq. �A4� and

�2 =
e2

�r�0l
. �A13�

c. Electron density and chemical potential

From the total electronic charge

 dV�e�z� = enTA , �A14�

we can straightforwardly �using Eq. �A9�� obtain the total
areal concentration of electrons

nT = �
v

nv, �A15�

with the nv’s denoting the subband occupations

nv =
m�

��2kBT ln�1 + e��−Ev�/kBT� . �A16�

When nT is fixed �i.e., the nT-constant model�, we can deter-
mine the chemical potential � from Eq. �A15�,
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FIG. 12. �Color online� Schematic representation of doping lay-
ers of width w and densities �a and �b plus the external gates Va and
Vb. By varying the external gates �we usually keep Va=0 and vary
Vb� we can alter the spatial symmetry of our quantum wells; see
Fig. 2. The curves illustrate the calculated gate+modulation doping
potential Vg�z� for Va=Vb �dashed line� and Va�Vb �solid line�,
both with �a��b.

CALSAVERINI et al. PHYSICAL REVIEW B 78, 155313 �2008�

155313-14



��2nT

m�kBT
= �

v
ln�1 + e��−Ev�/kBT� . �A17�

APPENDIX B: COEFFICIENTS ci’s

Using the continuity of Vg and its first derivative together
with the �Dirichlet� boundary conditions at the end points
Vg�−L�=Va and Vg�L�=Vb, we can determine the coefficients
ci’s appearing in Eq. �A6�. In the regions I and V we find

c1 = −
2Ld − w

2L
wC− − wC+ −

V−

L
, �B1�

c2 = −
1

2
�2Ld − w�wC− − LwC+ + V+, �B2�

c9 = −
2Ld − w

2L
wC− + wC+ −

V−

L
, �B3�

c10 = +
1

2
�2Ld − w�wC− − LwC+ + V+, �B4�

with

C� =
1

2
�A� B�, V� =

1

2
�Va � Vb� , �B5�

and A and B defined in Eq. �A7�. In the modulation doping
regions II and IV, we have

c3 =
w2 − 2wLd + 2LLd

2L
C− + �Ld − w�C+ −

V−

L
, �B6�

c4 = +
1

2
�Ld − w�2C− +

1

2
�Ld

2 − 2wL�C+ + V+, �B7�

c7 =
w2 − 2wLd + 2LLd

2L
C− − �Ld − w�C+ −

V−

L
, �B8�

c8 = −
1

2
�Ld − w�2C− +

1

2
�Ld

2 − 2wL�C+ + V+. �B9�

In the central region III, we have

c5 = +
2L − 2Ld + w

2L
wC− −

V−

L
, �B10�

c6 = −
1

2
�2L − 2Ld + w�wC+ + V+. �B11�
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